Boron Hydrogen Compounds for Hydrogen Storage and as Solid Ionic Conductors
نویسندگان
چکیده
منابع مشابه
Hydrogen storage in molecular compounds.
At low temperature (T) and high pressure (P), gas molecules can be held in ice cages to form crystalline molecular compounds that may have application for energy storage. We synthesized a hydrogen clathrate hydrate, H(2)(H(2)O)(2), that holds 50 g/liter hydrogen by volume or 5.3 wt %. The clathrate, synthesized at 200-300 MPa and 240-249 K, can be preserved to ambient P at 77 K. The stored hydr...
متن کاملPERFORMANCE OF AB, ALLOYS FOR HYDROGEN STORAGE AND HYDRIDE ELECTRODES
Two types of hydride electxodes are potential candidates to replace the Cd elecsode in NilCd batteries, One is of the A type where A is a rare earth metal or mixture thereof, and B is the transition metal. The other is commonly referred to as A type. A , type alloys with partial substitution of the B element in A type hydride material (Ovonic) with Co, Mn, Al, and Fe were studied (A compo...
متن کاملHydrogen Storage in Boron Nitride and Carbon Nanomaterials
Boron nitride (BN) nanomaterials were synthesized from LaB6 and Pd/boron powder, and the hydrogen storage was investigated by differential thermogravimetric analysis, which showed possibility of hydrogen storage of 1–3 wt%. The hydrogen gas storage in BN and carbon (C) clusters was also investigated by molecular orbital calculations, which indicated possible hydrogen storage of 6.5 and 4.9 wt%,...
متن کاملBoron-based organometallic nanostructures: hydrogen storage properties and structure stability.
Transition-metal (TM) boride and carboride nanostructures are studied as model organometallic materials for hydrogen storage. The dispersed TM atoms function as H2 sorption centers on the surface of the boron or carbon-boron substrate. The flexibility offered in the variety of possible structures permits the study of the effect of the TM-TM distance on the storage capacity. When the TMs are too...
متن کاملNanoporous array anodic titanium-supported co-polymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds.
A nanoporous array anodic titanium-supported co-polymeric ionic liquids (NAAT/PILs) solid-phase microextraction (SPME) fiber was prepared in situ on the titanium wire. NAAT was selected as the substrate, in view of its high surface-to-volume ratio, easy preparation, mechanical stability, and rich titanol groups on its surface which can anchor silica coupling agent containing vinyl and then intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CHIMIA International Journal for Chemistry
سال: 2019
ISSN: 0009-4293
DOI: 10.2533/chimia.2019.868